On weakly compact topological spaces
نویسندگان
چکیده
منابع مشابه
On Weakly Compact Subsets of Banach Spaces
Introduction. The two sections of this note are independent, but they are related by the fact that both use the results of [5 ] to obtain information on the properties of weakly compact sets in Banach spaces. In the first section we prove some results on a class of compact sets which is believed to include all weakly compact subsets of Banach spaces. We are interested in the properties of the n...
متن کاملWeakly Compact Approximation in Banach Spaces
The Banach space E has the weakly compact approximation property (W.A.P. for short) if there is a constant C < ∞ so that for any weakly compact set D ⊂ E and ε > 0 there is a weakly compact operator V : E → E satisfying supx∈D ‖x − V x‖ < ε and ‖V ‖ ≤ C. We give several examples of Banach spaces both with and without this approximation property. Our main results demonstrate that the James-type ...
متن کاملCompact Weakly Symmetric Spaces and Spherical Pairs
Let (G,H) be a spherical pair and assume that G is a connected compact simple Lie group and H a closed subgroup of G. We prove in this paper that the homogeneous manifold G/H is weakly symmetric with respect to G and possibly an additional fixed isometry μ. It follows that M. Krämer’s classification list of such spherical pairs also becomes a classification list of compact weakly symmetric spac...
متن کاملCompact Factors in Finally Compact Products of Topological Spaces
We present instances of the following phenomenon: if a product of topological spaces satisfies some given compactness property then the factors satisfy a stronger compactness property, except possibly for a small number of factors. The first known result of this kind, a consequence of a theorem by A. H. Stone, asserts that if a product is regular and Lindelöf then all but at most countably many...
متن کاملQuasi-compact Operators in Topological Linear Spaces
The classical theorems of Riesz [l] on compact operators have been extended by Leray [2] and Williamson [3] to the context of topological linear spaces. Ringrose [4] has shown that if an operator on such a space is compact, the square of its adjoint is also compact, where the topology on the dual space is that of uniform convergence on bounded sets. Thus if an operator is continuous and some po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences
سال: 1957
ISSN: 0386-2194
DOI: 10.3792/pja/1195525088